Features

- EE Programmable 65,536 x 1-, 131,072 x 1-, 262,144 x 1-, 524,288 x 1-, 1,048,576 x 1-, 2,097,152 x 1-, and 4,194,304 x 1-bit Serial Memories Designed to Store Configuration Programs for Field Programmable Gate Arrays (FPGAs)
- Supports both 3.3V and 5.0V Operating Voltage Applications
- In-System Programmable (ISP) via Two-Wire Bus
- Simple Interface to SRAM FPGAs
- Compatible with Atmel AT6000, AT40K and AT94K Devices, Altera® FLEX®, APEX™
 Devices, ORCA®, Xilinx® XC3000, XC4000, XC5200, Spartan®, Virtex® FPGAs
- Cascadable Read-back to Support Additional Configurations or Higher-density Arrays
- Very Low-power CMOS EEPROM Process
- Programmable Reset Polarity
- Available in 6 mm x 6 mm x 1 mm 8-lead LAP (Pin-compatible with 8-lead SOIC/VOIC Packages), 8-lead PDIP, 8-lead SOIC, 20-lead PLCC, 20-lead SOIC and 44-lead TQFP Packages
- Emulation of Atmel's AT24CXXX Serial EEPROMs
- Low-power Standby Mode
- · High-reliability
 - Endurance: 100,000 Write Cycles
 - Data Retention: 90 Years for Industrial Parts (at 85° C) and 190 Years for Commercial Parts (at 70° C)
- Green (Pb/Halide-free/RoHS Compliant) Package Options Available

1. Description

The AT17LV series FPGA Configuration EEPROMs (Configurators) provide an easy-to-use, cost-effective configuration memory for Field Programmable Gate Arrays. The AT17LV series device is packaged in the 8-lead LAP, 8-lead PDIP, 8-lead SOIC, 20-lead PLCC, 20-lead SOIC and 44-lead TQFP, see Table 1-1. The AT17LV series Configurators uses a simple serial-access procedure to configure one or more FPGA devices. The user can select the polarity of the reset function by programming four EEPROM bytes. These devices also support a write-protection mechanism within its programming mode.

The AT17LV series configurators can be programmed with industry-standard programmers, Atmel's ATDH2200E Programming Kit or Atmel's ATDH2225 ISP Cable.

FPGA Configuration EEPROM Memory

AT17LV65 AT17LV128 AT17LV256 AT17LV512 AT17LV010 AT17LV002 AT17LV040

3.3V and 5V System Support

11. Absolute Maximum Ratings*

Operating Temperature40° C to +85° C
Storage Temperature65°C to +150°C
Voltage on Any Pin with Respect to Ground0.1V to V _{CC} +0.5V
Supply Voltage (V _{CC})0.5V to +7.0V
Maximum Soldering Temp. (10 sec. @ 1/16 in.)260° C
ESD (R _{ZAP} = 1.5K, C _{ZAP} = 100 pF)2000V

*NOTICE:

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those listed under operating conditions is not implied. Exposure to Absolute Maximum Rating conditions for extended periods of time may affect device reliability.

12. Operating Conditions

			3.3V		5V		
Symbol	Description		Min	Max	Min	Max	Units
V _{cc}	Commercial	Supply voltage relative to GND -0°C to +70°C	3.0	3.6	4.75	5.25	٧
	Industrial	Supply voltage relative to GND -40° C to +85° C	3.0	3.6	4.5	5.5	V

13. DC Characteristics

 $V_{CC} = 3.3V \pm 10\%$

			AT17	LV65/ LV128/ LV256		LV512/ LV010	AT17LV002/ AT17LV040		
Symbol	Description		Min	Max	Min	Max	Min	Max	Units
V _{IH}	High-level Input Voltage	gh-level Input Voltage		V _{CC}	2.0	V _{CC}	2.0	V _{CC}	V
V_{IL}	Low-level Input Voltage		0	0.8	0	0.8	0	0.8	V
V _{OH}	High-level Output Voltage (I _{OH} = -2.5 mA)	0	2.4		2.4		2.4		V
V _{OL}	Low-level Output Voltage (I _{OL} = +3 mA)	Commercial		0.4		0.4		0.4	V
V _{OH}	High-level Output Voltage (I _{OH} = -2 mA)	Lordon Arta I	2.4		2.4		2.4		V
V _{OL}	Low-level Output Voltage (I _{OL} = +3 mA)	Industrial		0.4		0.4		0.4	V
I _{CCA}	Supply Current, Active Mode			5		5		5	mA
IL	Input or Output Leakage Current (V _{IN} = V _{CC}	or GND)	-10	10	-10	10	-10	10	μΑ
	Overal a Command Changello Marke	Commercial		50		100		150	μΑ
I _{CCS}	Supply Current, Standby Mode	Industrial		100		100		150	μΑ

14. DC Characteristics

 V_{CC} = 5V \pm 5% Commercial; V_{CC} = 5V \pm 10% Industrial

			AT17	LV65/ LV128/ LV256	AT17LV512/ AT17LV010		AT17LV002/ AT17LV040		
Symbol	Description		Min	Max	Min	Max	Min	Max	Units
V _{IH}	High-level Input Voltage	put Voltage		V _{CC}	2.0	V _{CC}	2.0	V _{CC}	V
V _{IL}	Low-level Input Voltage		0	0.8	0	0.8	0	0.8	V
V _{OH}	High-level Output Voltage (I _{OH} = -2.5 mA)	0	3.7		3.86		3.86		V
V _{OL}	Low-level Output Voltage (I _{OL} = +3 mA)	Commercial		0.32		0.32		0.32	V
V _{OH}	High-level Output Voltage (I _{OH} = -2 mA)	La de atrial	3.6		3.76		3.76		V
V _{OL}	Low-level Output Voltage (I _{OL} = +3 mA)	Industrial		0.37		0.37		0.37	V
I _{CCA}	Supply Current, Active Mode			10		10		10	mA
IL	Input or Output Leakage Current ($V_{IN} = V_{CC}$	or GND)	-10	10	-10	10	-10	10	μA
	Overal of Overal Observation Manufacture	Commercial		75		200		350	μΑ
I _{ccs}	Supply Current, Standby Mode	Industrial		150		200		350	μΑ

17. AC Characteristics

 $V_{CC} = 3.3V \pm 10\%$

			AT17LV6	5/128/256	6	AT	17LV512	/010/002/	040	
		Comr	mmercial Indust		strial	ial Commercial		Industrial		
Symbol	Description	Min	Max	Min	Max	Min	Max	Min	Max	Units
T _{OE} ⁽¹⁾	OE to Data Delay		50		55		50		55	ns
T _{CE} ⁽¹⁾	CE to Data Delay		60		60		55		60	ns
T _{CAC} ⁽¹⁾	CLK to Data Delay		75		80		55		60	ns
T _{OH}	Data Hold from $\overline{\text{CE}}$, OE, or CLK	0		0		0		0		ns
T _{DF} ⁽²⁾	CE or OE to Data Float Delay		55		55		50		50	ns
T _{LC}	CLK Low Time	25		25		25		25		ns
T _{HC}	CLK High Time	25		25		25		25		ns
T _{SCE}	CE Setup Time to CLK (to guarantee proper counting)	35		60		30		35		ns
T _{HCE}	CE Hold Time from CLK (to guarantee proper counting)	0		0		0		0		ns
T _{HOE}	OE High Time (guarantees counter is reset)	25		25		25		25		ns
F _{MAX}	Maximum Clock Frequency		10		10		15		10	MHz

Notes: 1. AC test lead = 50 pF.

2. Float delays are measured with 5 pF AC loads. Transition is measured ± 200 mV from steady-state active levels.

18. AC Characteristics when Cascading

 $V_{CC} = 3.3V \pm 10\%$

		AT17LV65/128/256			AT17LV512/010/002/040					
		Commercial		Industrial		Commercial		Industrial		
Symbol	Description	Min	Max	Min	Max	Min	Max	Min	Max	Units
T _{CDF} ⁽²⁾	CLK to Data Float Delay		60		60		50		50	ns
T _{OCK} ⁽¹⁾	CLK to CEO Delay		55		60		50		55	ns
T _{OCE} ⁽¹⁾	CE to CEO Delay		55		60		35		40	ns
T _{OOE} ⁽¹⁾	RESET/OE to CEO Delay		40		45		35		35	ns
F _{MAX}	Maximum Clock Frequency		8		8		12.5		10	MHz

Notes: 1. AC test lead = 50 pF.

2. Float delays are measured with 5 pF AC loads. Transition is measured ± 200 mV from steady-state active levels.

19. AC Characteristics

 V_{CC} = 5V ± 5% Commercial; V_{CC} = 5V ± 10% Industrial

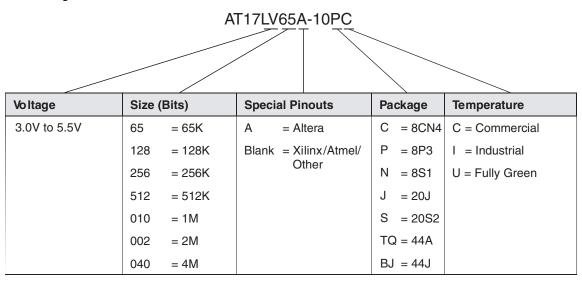
			AT17LV6	5/128/256	6	AT17LV512/010/002/040				
		Comr	nercial	ercial Industrial		Commercial		Industrial		
Symbol	Description	Min	Max	Min	Max	Min	Max	Min	Max	Units
T _{OE} ⁽¹⁾	OE to Data Delay		30		35		30		35	ns
T _{CE} ⁽¹⁾	CE to Data Delay		45		45		45		45	ns
T _{CAC} ⁽¹⁾	CLK to Data Delay		50		55		50		50	ns
T _{OH}	Data Hold from $\overline{\text{CE}}$, OE, or CLK	0		0		0		0		ns
T _{DF} ⁽²⁾	CE or OE to Data Float Delay		50		50		50		50	ns
T_LC	CLK Low Time	20		20		20		20		ns
T _{HC}	CLK High Time	20		20		20		20		ns
T _{SCE}	CE Setup Time to CLK (to guarantee proper counting)	35		40		20		25		ns
T _{HCE}	CE Hold Time from CLK (to guarantee proper counting)	0		0		0		0		ns
T _{HOE}	OE High Time (guarantees counter is reset)	20		20		20		20		ns
F _{MAX}	Maximum Clock Frequency		12.5		12.5		15		15	MHz

Notes: 1. AC test lead = 50 pF.

2. Float delays are measured with 5 pF AC loads. Transition is measured \pm 200 mV from steady-state active levels.

20. AC Characteristics when Cascading

 V_{CC} = 5V ± 5% Commercial; V_{CC} = 5V ± 10% Industrial


		AT17LV65/128/256			AT17LV512/010/002/040					
		Commercial		Industrial		Commercial		Industrial		
Symbol	Description	Min	Max	Min	Max	Min	Max	Min	Max	Units
T _{CDF} ⁽²⁾	CLK to Data Float Delay		50		50		50		50	ns
T _{OCK} ⁽¹⁾	CLK to CEO Delay		35		40		35		40	ns
T _{OCE} ⁽¹⁾	CE to CEO Delay		35		35		35		35	ns
T _{OOE} ⁽¹⁾	RESET/OE to CEO Delay		30		35		30		30	ns
F _{MAX}	Maximum Clock Frequency		10		10		12.5		12.5	MHz

Notes: 1. AC test lead = 50 pF.

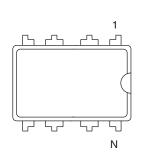
2. Float delays are measured with 5 pF AC loads. Transition is measured ± 200 mV from steady-state active levels.

Figure 21-1. Ordering Code

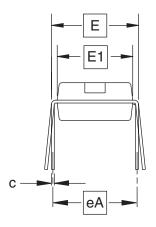
	Package Type							
8CN4	8-lead, 6 mm x 6 mm x 1 mm, Leadless Array Package (LAP) – Pin-compatible with 8-lead SOIC/VOID Packages							
8P3	8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)							
8S1	8-lead, 0.150" Wide, Plastic Gull Wing Small Outline (JEDEC SOIC)							
20J	20-lead, Plastic J-leaded Chip Carrier (PLCC)							
20S2	20-lead, 0.300" Wide, Plastic Gull Wing Small Outline (JEDEC SOIC)							
44A	44-lead, Thin (1.0 mm) Plastic Quad Flat Package Carrier (TQFP)							

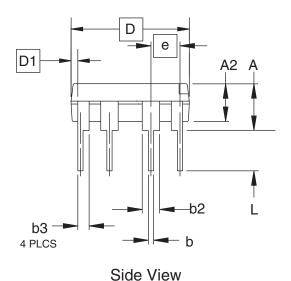
22. Ordering Information

22.1 **Standard Package Options**


Memory Size	Ordering Code	Package ⁽²⁾⁽³⁾	Operation Range	
	AT17LV65-10PC	8P3	Commercial	
	AT17LV65-10NC	8S1	(0°C to 70°C)	
64-Kbit ⁽¹⁾	AT17LV65-10JC	20J	(0 0 10 70 0)	
04-Noit	AT17LV65-10PI	8P3	Industrial	
	AT17LV65-10NI	8S1	(-40° C to 85° C)	
	AT17LV65-10JI	20J	(40 0 10 00 0)	
	AT17LV128-10PC	8P3		
	AT17LV128-10NC	8S1	Commercial	
	AT17LV128-10JC	20J	(0°C to 70°C)	
128-Kbit ⁽¹⁾	AT17LV128-10SC	20S2		
120-KDIL 7	AT17LV128-10PI	8P3		
	AT17LV128-10NI	8S1	Industrial	
	AT17LV128-10JI	20J	(-40° C to 85° C)	
	AT17LV128-10SI	20S2		
	AT17LV256-10PC	8P3		
	AT17LV256-10NC	8S1	Commercial	
	AT17LV256-10JC	20J	(0°C to 70°C)	
256-Kbit ⁽¹⁾	AT17LV256-10SC	20S2		
256-KDII(/	AT17LV256-10PI	8P3		
	AT17LV256-10NI	8S1	Industrial	
	AT17LV256-10JI	20J	(-40° C to 85° C)	
	AT17LV256-10SI	20S2		
	AT17LV512-10PC	8P3	Commercial	
512-Kbit ⁽¹⁾	AT17LV512-10JC	20J	(0°C to 70°C)	
512-KDIL 7	AT17LV512-10PI	8P3	Industrial	
	AT17LV512-10JI	20J	(-40° C to 85° C)	
	AT17LV010-10PC	8P3	Commercial	
1-Mbit ⁽¹⁾	AT17LV010-10JC	20J	(0°C to 70°C)	
I-IVIDIL ^(*)	AT17LV010-10PI	8P3	Industrial	
	AT17LV010-10JI	20J	(-40° C to 85° C)	
2-Mbit ⁽¹⁾	AT17LV002-10JC	20J	Commercial (0° C to 70° C)	
Z-IVIUIL\``'	AT17LV002-10JI	20J	Industrial (-40° C to 85° C)	

- Notes: 1. For operating 5V operating voltage, please refer to the corresponding AC and DC Characteristics.
 - 2. For the -10SC and -10SI packages, customers may migrate to the AT17LVXXX-10SU.
 - 3. For the -10TQC and -10TQI packages, customers may migrate to the AT17LVXXX-10TQU.




23.2 8P3 - PDIP

Top View

End View

COMMON DIMENSIONS

(Unit of Measure = inches)

SYMBOL	MIN	NOM	MAX	NOTE
Α			0.210	2
A2	0.115	0.130	0.195	
b	0.014	0.018	0.022	5
b2	0.045	0.060	0.070	6
b3	0.030	0.039	0.045	6
С	0.008	0.010	0.014	
D	0.355	0.365	0.400	3
D1	0.005			3
E	0.300	0.310	0.325	4
E1	0.240	0.250	0.280	3
е	(
eA	(;	4	
L	0.115	0.130	0.150	2

Notes

- 1. This drawing is for general information only; refer to JEDEC Drawing MS-001, Variation BA for additional information.
- 2. Dimensions A and L are measured with the package seated in JEDEC seating plane Gauge GS-3.
- 3. D, D1 and E1 dimensions do not include mold Flash or protrusions. Mold Flash or protrusions shall not exceed 0.010 inch.
- 4. E and eA measured with the leads constrained to be perpendicular to datum.
- 5. Pointed or rounded lead tips are preferred to ease insertion.
- 6. b2 and b3 maximum dimensions do not include Dambar protrusions. Dambar protrusions shall not exceed 0.010 (0.25 mm).

	TITLE	DRAWING NO.	REV.
2325 Orchard Parkway San Jose, CA 95131	8P3 , 8-lead, 0.300" Wide Body, Plastic Dual In-line Package (PDIP)	8P3	В